PENGEMBANGAN DESAIN MODULAR ELEMEN DINDING MATERIAL BETON RINGAN BERTULANG BAMBU PADA BANGUNAN RUMAH SEDERHANA
Abstract
Sistem modular memungkinkan percepatan pembangunan dengan tingkat presisi tinggi, mengurangi limbah material, dan memudahkan perakitan di lapangan. Penelitian ini menggunakan literatur review dan disimpulkan kedalam rekomendasi desain panel dinding beton ringan bertulang bambu. Material beton ringan untuk panel dinding memiliki berat jenis kisaran angka 950 kg/m3. Pemilihan jenis beton ringan harus disesuaikan dengan kebutuhan aplikasi dilapangan seperti panel non-struktural dengan berat jenis <1.000 kg/m3 dengan kuat tekan >5 MPa. Hasil nilai kuat tarik bambu tidak seragam mulai dari 95 MPa hingga 285 MPa. Treatmen sebelum dilakukan sebagai tulangan yaitu dengan dilapisi cat atau melamin agar kedap air dan diberi pasir agar meningkatkan kelekatan pada beton. Desain panel dinding beton ringan bertulang bambu menekankan pada unsur repetisi komponen, keseragaman ukuran, model sambungan, dan kemudahan dalam pelaksanaan. Model sambungan pada panel dinding menggunakan plat baja siku dan baut, dengan ukuran panel yang efektif yaitu 50 cm x 300 cm dengan berat perpanel sekitar 145 kg.
References
ACI Committee 213 (2003) ACI 213R-87. Guide for Structural Lightweight Aggregate Concrete. American Concrete Institute, Farmington Hills.
Adinda, N., Dwipriyoko, E., Kusuma, D., Henong, S., Nuryono, B., Haris, S., & Mahardhika, A. (2021). Analysis of Modular House Fabrication Technology Application in Subsidized Housing Construction Based on Project Planning. Journal of Physics: Conference Series, 1933. https://doi.org/10.1088/1742-6596/1933/1/012099.
Amiruddin, A., Parung, H., Sibela, N., Fajar, M., & Arifin, H. (2022). The Effect of Bamboo Water Content on The Tensile Strength of Bamboo. IOP Conference Series: Earth and Environmental Science, 1117. https://doi.org/10.1088/1755-1315/1117/1/012008.
Amran, Y. (2020). Influence of structural parameters on the properties of fibred-foamed concrete. Innovative Infrastructure Solutions, 5, 1-18. https://doi.org/10.1007/s41062-020-0262-8.
Aprianti, T., Supriati, R., & Purwanto. (2018). Karakteristik mekanis bambu wulung (Gigantochloa atroviolacea) sebagai material konstruksi berkelanjutan. Jurnal Teknik Sipil, 15(2), 45-54. https://doi.org/10.31815/jp.2020.15.43-53
Apriyanto, M., Sudarmanto, & Hartono, R. (2020). Analisis sifat fisik dan mekanik bambu apus (Gigantochloa apus) dari Jawa Tengah. Jurnal Ilmu Kayu Indonesia, 18(1), 12-20.
Baidarus, M., Febriano, D., Mubarok, D., & Ramadhani, M. (2023). Kajian Sistematis Kebijakan Skema Pembiayaan Kerja Sama Pemerintah Dengan Badan Usaha (Kpbu) Pada Sektor Perumahan Guna Mengatasi Backlog Di Indonesia. Jurnal BPPK: Badan Pendidikan dan Pelatihan Keuangan. https://doi.org/10.48108/jurnalbppk.v16i1.711.
Bala, A., & Gupta, S. (2023). Engineered bamboo and bamboo-reinforced concrete elements as sustainable building materials: A review. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2023.132116.
Faris Moh Faisal. 2016. Kapasitas Geser Balok Tinggi Beton Bertulang Bambu dengan Variasi Jenis Bahan Sengkang Besi dan Bambu.Skripsi. Jurusan Teknik Sipil Fakultas Teknik Universitas Negeri Malang.
Ferreira, S., Morais, M., Costa, V., Velosa, A., Vela, G., Teles, J., & Pereira, T. (2023). Modular sandwich panel system for non-loadbearing walls – Experimental mechanical, fire and acoustic testing. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2023.107642.
Ghavami, K. (2005). Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites, 27(6), 637-649. https://doi.org/10.1016/j.cemconcomp.2004.09.004
Gibb, A.G.F. (2001). Standardization and Pre-assembly in Construction. Journal. Construction Management and Economics February 200119(3):307-315. https://doi.org/10.1080/01446190010020435.
Janssen, J.J.A. (2000) Designing and Building with Bamboo. International Network for Bamboo and Rattan, p. 208 (Technical Report).Technical University of Eindhoven. The Netherlands.
Jones, M. R., K. Ozlutas, and L. Zheng. 2017. High-volume, ultra-low-density fly ash foamed concrete. Mag. Concr. Res. 69 (22): 1146–1156. https://doi.org/10.1680/jmacr.17.00063
Kamthai, S., & Puthson, P. (2021). Physical and mechanical properties of Bambusa vulgaris for green construction. Journal of Natural Fibers, 18(8), 1125-1135. https://doi.org/10.1080/15440478.2019.1691116
Kearsley, E. P. and Mostert H. F. 2017. The Effect of Polypropylene Fibers on the Properties of Foamed Concrete. Proceedings of International Symposium; Role of Concrete in Sustainable Development, Dundee, Scotland, (2003), pp. 557 - 566.
Liese, W., & Kohl, M. (2015). Bamboo: The plant and its uses. Springer. https://doi.org/10.1007/978-3-319-14133-6
Lopes, G., Vicente, R., Azenha, M., & Ferreira, T. (2017). A systematic review of Prefabricated Enclosure Wall Panel Systems: Focus on technology driven for performance requirements. Sustainable Cities and Society. https://doi.org/10.1016/J.SCS.2017.12.027.
Nambiar, E.K., & Ramamurthy, K. (2019). Rice Husk Ash in Foamed Concrete. IOP Conference Series: Materials Science and Engineering, 271. https://doi.org/10.1088/1757-899X/271/1/012012.
Nawy, E.G. (2008) Concrete Construction Engineering Handbook. 2nd Edition, CRC Press, Boca Raton.
http://dx.doi.org/10.1201/9781420007657.
Ramamurthy, K., Nambiar, E., & Ranjani, G. (2019). A classification of studies on properties of foam concrete. Cement & Concrete Composites, 31, 388-396. https://doi.org/10.1016/J.CEMCONCOMP.2009.04.006.
Smith, Ryan, E. (2016). Prefab Architecture: A Guide to Modular Design and Construction. Jhon Wiley and Sonc.Inc. Hoboken. New Jersey. USA. ISBN 978-0-470-88044-9 (ebk). NA8480.S66 2011.
SNI 03-3449-2002. (2002). Tata Cara Rencana Pembuatan Campuran Beton Ringan dengan Agregat Ringan, Badan Standarisasi Nasional. Bandung.
SNI 03-1733-2004 (2004). Tata Cara Perencanaan Lingkungan Perumahan di Perkotaan. Badan Standarisasi Nasional. Bandung.
UN-Habitat, (2012). Going Green: A Handbook of Sustainable Housing Practices, First Published in Nairobi in 2012 by UN-Habitat. www.unhabitat.org.
Warszawski, A. (1999). Industrialized and Automated Building Systems. Edition, 2 ; Publisher, Publisher Taylor & Francis E&FN Spon.Press LLC. London.
Wijaya, D., & Santoso, E. (2021). Beton Ringan berbasis Batu Apung Lombok dengan Foam Agent. Prosiding Seminar Nasional Teknik Kimia.4(2):165–71.
Li, Y., Yuan, Z., Li, M., Gu, S., Wang, C., & Cheng, H. (2024). Replacing plastic automotive interiors with bamboo: a study on the mechanical and flame-retardant properties of melamine polyphosphate-modified bamboo fiber-reinforced composites. Journal of Materials Science. https://doi.org/10.1007/s10853-024-10227-0.
Zhang, L., et al. (2018). Effect of Foaming Agent on Lightweight Concrete Properties. IOP Conference Series: Materials Science and Engineering, Volume 490, Issue 3. https://doi.org/10.1088/1757-899X/490/3/03203.
Copyright (c) 2025 Jurnal SENDI

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.